Processive utilization of the human telomerase template: lack of a requirement for template switching.

نویسندگان

  • Melissa A Rivera
  • Elizabeth H Blackburn
چکیده

The ribonucleoprotein telomerase is a specialized reverse transcriptase minimally composed of an RNA, TER, and a protein catalytic subunit, TERT. The TER and TERT subunits of telomerase associate to form a dimeric enzyme in several organisms, including human. A small portion of TER, the template domain, is used by telomerase for the synthesis of tandem repeats of telomeric DNA. We studied some of the requirements for processive template usage by human telomerase. A blunt-ended duplex DNA primer was not utilized by telomerase. With a duplex telomeric DNA primer, a single-stranded 3' overhang with a minimum length of approximately 6 bases was required for efficient priming activity. Large substitutions in the human TER templating domain did not abolish enzymatic activity, although insertion of two residues into this sequence reduced processivity, as did a template mutation that results in a mismatch between the template region used for copying DNA and the region used for alignment of the substrate primer. Finally, by using a complementary pair of catalytically inactive telomerase RNA pseudoknot mutants in combination with a marked template, we demonstrated that processive synthesis by an obligatory dimer of human telomerase does not require template switching. These results indicate that processive template usage by human telomerase, like that of Tetrahymena telomerase, is strongly dependent on the base identities in the template domain and that a dimeric human telomerase can processively utilize a single template.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA/DNA hybrid binding affinity determines telomerase template-translocation efficiency.

Telomerase synthesizes telomeric DNA repeats onto chromosome termini from an intrinsic RNA template. The processive synthesis of DNA repeats relies on a unique, yet poorly understood, mechanism whereby the telomerase RNA template translocates and realigns with the DNA primer after synthesizing each repeat. Here, we provide evidence that binding of the realigned RNA/DNA hybrid by the active site...

متن کامل

A self-regulating template in human telomerase.

Telomerase is a specialized reverse transcriptase (RT) containing an intrinsic telomerase RNA (TR) component. It synthesizes telomeric DNA repeats, (GGTTAG)n in humans, by reiteratively copying a precisely defined, short template sequence from the integral TR. The specific mechanism of how the telomerase active site uses this short template region accurately and efficiently during processive DN...

متن کامل

Single-stranded DNA repeat synthesis by telomerase.

The eukaryotic ribonucleoprotein reverse transcriptase (RT) telomerase uses a template within its integral RNA subunit to extend chromosome ends by synthesis of single-stranded telomeric repeats. Telomerase is adapted to its unique cellular role by an ability to release product DNA in single-stranded form, regenerating free template from the product-template hybrid. Furthermore, by retaining a ...

متن کامل

Minimum length requirement of the alignment domain of human telomerase RNA to sustain catalytic activity in vitro.

Telomeres are essential for genomic stability and cell viability. Telomerase, the enzyme responsible for telomere maintenance, is composed of a reverse transcriptase protein subunit and an integral RNA component which contains the templating domain. In human telomerase, the template region consists of 11 nt (3'-rCAAUCCCAAUC-5') and comprises an alignment domain (italicised) plus a template sequ...

متن کامل

Functional reconstitution of wild-type and mutant Tetrahymena telomerase.

Telomerase is a ribonucleoprotein that catalyzes telomere elongation in vitro and in vivo. The 159-nucleotide RNA component of Tetrahymena telomerase contains the sequence 5'-CAACCCCAA-3' ("template region"), which serves as a template for the addition of the sequence d(TTGGGG)n to Tetrahymena telomeres. To dissect the Tetrahymena telomerase enzyme mechanism, we developed a functional in vitro ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 51  شماره 

صفحات  -

تاریخ انتشار 2004